The below criteria are used by the department to assess students' progress, knowledge and skills throughout Year 9.

CRE Descriptor	AUT Term	SPR Term	SUM Term
Mastering (Learner meets all expectations of Developing and securing, and is succeeding in some or all of these areas as well).	- Is able to write if...elseif...else statements using a range of relational operators. - Can demonstrate the use of nested selection. - Understand simple Boolean logic [for example, AND, OR and NOT] and its uses in programming. - Is able to decompose a problem and use pattern recognition to develop a suitable solution. - Demonstrates enhance problem-solving skills and a high level of independence to find solutions to problems and to debug their code. - Students are able to fully use KS3 key terms around programming. - Can describe how the Middle Squares algorithm works to create a random number. - Is able to plan effective ideas to develop their programming project (game or other) further. - Use Mu development environment to write, execute, and debug a Python program for the micro:bit. - Can describe what an Embedded System is and how they are different to a General Purpose Computer System and can define what advantages do they have over General Purpose Computers. - Is able to program fully and accurately in context. Mastering students achieve consistently well in all summative tests.	- Use complex functions and formulas such as IIF, Lookups or other advanced features. - Validate data, add rules to check data input. Use absolute / relative referencing. - Carry out binary addition. - Understand the relationship between binary and file size. - Is able to convert Hex to Denary or Binary and viceversa.	- Demonstrate an advanced understanding of internal and external components including ones you could find on the motherboard. Give a wide range of examples of hardware and peripherals. - Describe some of the functions of an operating system. - Can write about emerging technologies and their impact on society. - Can define what a control system is a give several examples of their use in everyday life, explaining the inputs, outputs and flow of logic (processing) followed.

Securing (Learner meets all expectations of Developing, and is succeeding in these some or all of these areas as well).	- Concatenate text and string variables successfully without support. - Is able to write simple if...elseif...else statements. - Can describe different Datatypes and is able to use most key terms. - Understand that a seed, using time, is used to create Random numbers. - Can accurately program the use of random numbers according to a given context. - Is able to choose and apply iteration correctly in a range drawing challenges using Python Turtle. - Able to write, execute, and debug a program which uses core programming constructs for the micro:bit using Makecode.org. - Can use variables and Boolean (true or false) to control the flow of a program and mathematical operators with the micro:bit. - Can trace through code effectively to work out a given outcome. - Has a good understanding of file management and organises their working using a logical folder structure and appropriate naming conventions.	- Describe what Average, Max, Min and Mode values are and how they can be applied to a given context. - Understand the need for data validation and the difference between validation and verification. - Knows how to present data in an easily readable form using a range of methods. - Understand how numbers can be represented in binary. - Understand the difference in numbering systems (Base 2 binary; Base 10 - denary/decimal). - Convert denary to 8 bit binary and 8 bit binary to denary.	- Can clearly define what an algorithm is. - Is able to use Flowol to demonstrate bridge light control system. - Can state what a control system is an give some examples of their use in everyday life, explaining the inputs and outputs. - Know that computers contain processors and explain what the CPU does. - Understand the need for main memory and secondary storage. - Correctly define the term software. - Recognise common operating systems and list some of the functions of an operating system.
Developing (Learner is succeeding in some or all of these areas).	- Students can define what a variable is. - Know how to display messages and store a user input in a variable. - Students understand variable naming conventions. - Describe what selection is and explain how it works. - Is able to write simple if...else statements. - Is able to write sequential instructions for Python Turtle. - Is able to draw a given shape using Python Turtle. - Demonstrates some use of iteration within Python Turtle. - List the micro:bit's input and output devices. - Write programs that use the micro:bit's 5×5 LED display for output. - Can accurately demonstrate the user of using a forever Loop; programming buttons to perform an action with the micro:bit. - Has an understanding of file management.	- Understand the application and benefits of spreadsheets - Know how to navigate Excel. - Demonstrate the user of basic formula using arithmetic operators. - Demonstrate the use of aggregate Functions (SUM, Average, Max, Min and Mode values) - Demonstrate that data validation is in evidence. - Recognise the difference between data $(0,1)$ and information - numbers/text/sound/images/video. - Recognise numbers can be represented in binary. - Carry out simple operations on binary numbers converting between binary and decimal.	- Understand a range of ways to use technology safely, respectfully, responsibly and securely. - Basic understanding of digital footprints, how to protect their online identity and privacy. - Recognise inappropriate content, contact and conduct. - No know how to report concerns. - Be able to read and interpret basic flowchart symbols. - Students will know how to write algorithms using flowcharts. - Describe the difference between hardware and software. - Understand that a computer system consists of Input, Process, and Output. - Recognise input devices and describe their uses. - Recognise output devices and describe their uses. - Identify the core components inside a computer and state their purpose. - Know the difference between application software and system software. - Recognise different types of application software and their uses. - Recognise common operating systems and list their purpose.

