

Introduction

- The first chapter of FP1 introduces you to imaginary and complex numbers
- You will have seen at GCSE level that some quadratic equations cannot be solved
- Imaginary and complex numbers will allow us to actually solve these equations!
- We will also see how to represent them on an Argand diagram
- We will also see how to use complex numbers to solve cubic and quartic equations

Complex Numbers

You can use both real and imaginary numbers to solve equations

At GCSE level you met the Quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

The part under the square root sign is known as the 'discriminant', and can be used to determine how many solutions the equation has:

$$
\begin{array}{ll}
b^{2}-4 a c>0 & -\rightarrow 2 \text { real roots } \\
b^{2}-4 a c=0 & -\rightarrow 1 \text { real root } \\
b^{2}-4 a c<0 & -\rightarrow 0 \text { real roots }
\end{array}
$$

The problem is that we cannot square root a negative number, hence the lack of real roots in the $3^{\text {rd }}$ case above

To solve these equations, we can use the imaginary number ' i '

$$
i=\sqrt{-1}
$$

The imaginary number 'i' can be combined with real numbers to create 'complex numbers'

An example of a complex number would be:

$$
5+2 i
$$

Complex numbers can be added, subtracted, multiplied and divided in the same way you would with an algebraic expression

Complex Numbers

$\begin{gathered}\text { This sign means } \\ \text { the positive } \\ \text { square root }\end{gathered} \longrightarrow \sqrt{-36}$
$\sqrt{36} \sqrt{-1}$
$=6 i$$\left\{\begin{array}{c}\text { Split up using surd } \\ \text { manipulation } \\ \text { Simplify each part } \\ \rightarrow \sqrt{-1=i}\end{array}\right.$
2) Write $\sqrt{-28}$ in terms of i

Complex Numbers

You can use both real and imaginary numbers to solve equations

Solve the equation:

$$
x^{2}+9=0
$$

$$
\begin{aligned}
x^{2}+9 & =0 \\
x^{2} & =-9
\end{aligned}
$$

$$
x= \pm \sqrt{-9}
$$

$$
x= \pm \sqrt{9} \sqrt{-1}
$$

Subtract 9

Square root - we need to consider both positive and negative as we are solving an equation

Split up

Write in terms of i

$$
x= \pm 3 i
$$

You should ensure you write full workings - once you have had a lot of practice you can do more in your head!

Complex Numbers

You can use both real and imaginary numbers to solve equations

Solve the equation:

$$
x^{2}+6 x+25=0
$$

\rightarrow You can use one of two methods for this
\rightarrow Either 'Completing the square' or the Quadratic formula

The squared bracket gives us both the x^{2} term and the $6 x$ term
\rightarrow It only gives us a number of 9 , whereas we need 25 - add 16 on!

Completing the square

Complex Numbers

You can use both real and imaginary numbers to solve equations

Solve the equation:

$$
x^{2}+6 x+25=0
$$

\rightarrow You can use one of two methods for this
\rightarrow Either 'Completing the square' or the Quadratic formula

$$
\begin{aligned}
& a=1 \\
& b=6 \\
& c=25
\end{aligned}
$$

The Quadratic formula

$$
\left.\begin{array}{l}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
x=\frac{-6 \pm \sqrt{(6)^{2}-(4 \times 1 \times 25)}}{2(1)} \\
x=\frac{-6 \pm \sqrt{-64}}{2} \\
x=\frac{-6 \pm \sqrt{64} \sqrt{-1}}{2} \\
x=\frac{-6 \pm 8 i}{2} \\
x=-3 \pm 4 i
\end{array}\right\} \text { split } \quad\left\{\begin{array}{l}
\text { Sim }
\end{array}\right.
$$

Sub in values

Calculate the part under the root sign

If the x^{2} coefficient is greater than 1 , or the x term is odd, the Quadratic formula will probably be the easiest method!

Complex Numbers

You can use both real and imaginary numbers to solve equations

$$
\text { 1) } \begin{aligned}
& (2+5 i)+(7+3 i) \\
= & 9+8 i
\end{aligned}
$$

Simplify each of the following, giving
your answers in the form:
$a+b i$
where:
$a \in R$ and $b \in R$
2) $(2-5 i)-(5-11 i)$

$$
=2-5 i-5+11 i
$$

$$
=-3+6 i
$$

3) $6(1+3 i)$

$$
=6+18 i
$$

Multiply out the bracket

Complex Numbers

You can multiply complex numbers and simplify powers of I

Complex numbers can be multiplied using the same techniques as used in algebra.

You can also use the following rule to simplify powers of i:

$$
\begin{aligned}
i & =\sqrt{-1} \\
i^{2} & =-1
\end{aligned}
$$

Multiply out the following bracket

$$
\begin{aligned}
& (2+3 i)(4+5 i) \\
& =8+12 i+10 i+15 i^{2} \\
& =8+22 i+15(-1) \\
& =-7+22 i
\end{aligned}\left\{\begin{array}{c}
\text { Multiply put like you would } \\
\text { algebraically (eg) grid method, } \\
\text { FOIL, smiley face etc) } \\
\text { Group iterms, write i2 as }-1 \\
\text { Simplify }
\end{array}\right.
$$

Complex Numbers

You can multiply complex numbers and simplify powers of I

Complex numbers can be multiplied using the same techniques as used in algebra.

You can also use the following rule to simplify powers of i:

$$
\begin{aligned}
i & =\sqrt{-1} \\
i^{2} & =-1
\end{aligned}
$$

Express the following in the form $a+b i$
$\left.\begin{array}{l}(7-4 i)^{2} \\ =(7-4 i)(7-4 i) \\ =49-28 i-28 i+16 i^{2} \\ =49-56 i+16(-1) \\ =33-56 i\end{array}\right\} \begin{aligned} & \text { Write as a double bracket } \\ & \text { Group iterms, write } i^{2} \text { as }-1 \\ & \text { Simplify }\end{aligned}$

Complex Numbers

You can multiply complex numbers and simplify powers of I

Complex numbers can be multiplied using the same techniques as used in algebra.

You can also use the following rule to simplify powers of i:

$$
\begin{aligned}
i & =\sqrt{-1} \\
i^{2} & =-1
\end{aligned}
$$

Simplify the following:

$$
\begin{aligned}
& (2-3 i)(4-5 i)(1+3 i) \\
& (2-3 i)(4-5 i) \\
& =8-12 i-10 i+15 i^{2} \\
& =8-22 i+15(-1) \\
& =-7-22 i
\end{aligned}
$$

Now multiply this by the $3^{\text {rd }}$ bracket

$$
\begin{aligned}
& (-7-22 i)(1+3 i) \\
& =-7-22 i-21 i-66 i^{2} \\
& =-7-43 i-66(-1) \\
& =59-43 i
\end{aligned}
$$

Complex Numbers

You can multiply complex numbers and simplify powers of I

Complex numbers can be multiplied using the same techniques as used in algebra.

You can also use the following rule to simplify powers of i:

$$
\begin{aligned}
i & =\sqrt{-1} \\
i^{2} & =-1
\end{aligned}
$$

Simplify:

1) i^{3}

$$
=i^{2} \times i
$$

$$
=-1 \times i
$$

$$
=-i
$$

2) i^{4}
$=i^{2} \times i^{2}$
$=-1 \times-1$
$=1$$\left\{\begin{array}{l}\text { Split up } \\ \text { Replace the } i^{2} \text { terms with }-1 \\ \text { Simplify }\end{array}\right.$

You can multiply complex numbers and simplify powers of I

Complex numbers can be multiplied using the same techniques as used in algebra.

You can also use the following rule to simplify powers of i :

$$
\begin{aligned}
i & =\sqrt{-1} \\
i^{2} & =-1
\end{aligned}
$$

Complex Numbers

Simplify:
3) $(2 i)^{5}$

$$
=2^{5} \times i^{5}
$$

$=2^{5} \times i^{5}$

$$
=2^{5} \times i^{2} \times i^{2} \times i \quad \begin{aligned}
& \text { Split up the i terms }
\end{aligned} \text { Work out } 2^{5} \text { and replace }
$$

$=2^{5} \times i^{2} \times i^{2} \times i$

$$
=32 \times-1 \times-1 \times i
$$

$$
\text { the } i^{2} \text { terms }
$$ the i^{2} terms

$$
=32 i
$$

Simplify

Complex Numbers

You can find the complex conjugate of a complex number

You can write down the complex conjugate of a complex number, and it helps you divide one complex number by another

If a complex number is given by:

$$
a+b i
$$

Then the complex conjugate is:

$$
a-b i
$$

(You just reverse the sign of the imaginary part!)

Together, these are known as a complex conjugate pair

The complex conjugate of z is written as
z^{\star}

Write down the complex conjugate of:
a) $2+3 i$
$=2-3 i$
Reverse the sign of the imaginary term
b) $5-2 i$

$$
=5+2 i
$$

Reverse the sign of the imaginary term

Reverse the sign of the imaginary term

$$
\text { c) } \left.\begin{array}{l}
1-i \sqrt{5} \\
=1+i \sqrt{5}
\end{array}\right\}
$$

Complex Numbers

You can find the complex conjugate of a complex number

Find $z+z^{*}$, and $z z^{*}$, given that:

$$
\begin{gathered}
z=2-7 i \\
\rightarrow z^{\star}=2+7 i
\end{gathered}
$$

Complex Numbers

You can find the complex conjugate of a complex number

Find $z+z^{*}$, and $z z^{*}$, given that:

$$
\begin{gathered}
z=2 \sqrt{2}+i \sqrt{2} \\
\rightarrow z^{\star}=2 \sqrt{2}-i \sqrt{2}
\end{gathered}
$$

$$
\begin{aligned}
& z+z^{*} \\
& =(2 \sqrt{2}+i \sqrt{2})+(2 \sqrt{2}-i \sqrt{2}) \\
& =4 \sqrt{2} \\
& z z^{*} \\
& =(2 \sqrt{2}+i \sqrt{2})(2 \sqrt{2}-i \sqrt{2}) \\
& =4 \sqrt{4}+2 i \sqrt{4}-2 i \sqrt{4}-i^{2} \sqrt{4} \\
& =8-(-1)(2) \\
& =10
\end{aligned}
$$

Replace z and z^{*}
Group terms
$\left\{\begin{array}{l}\text { Replace } z \text { and } z^{*} \\ \text { Multiply out } \\ \text { Some terms cancel } \\ \text { out, replace i }{ }^{2} \text { with }-1 \\ \text { Simplify }\end{array}\right.$

Complex Numbers

You can find the complex conjugate of a complex number

Simplify:

$$
(10+5 i) \div(1+2 i)
$$

With divisions you will need to write it as a fraction, then multiply both the numerator and denominator by
the complex conjugate of the denominator
(This is effectively the same as rationalising when surds are involved!)

Complex Numbers

You can find the complex conjugate of a complex number

Simplify:

$$
(5+4 i) \div(2-3 i)
$$

With divisions you will need to write it as a fraction, then multiply both the numerator and denominator by
the complex conjugate of the denominator
(This is effectively the same as rationalising when surds are involved!)

$$
\frac{5+4 i}{2-3 i} \times \frac{2+3 i}{2+3 i}
$$

$$
=\frac{(5+4 i)(2+3 i)}{(2-3 i)(2+3 i)}
$$

$$
=\frac{10+8 i+15 i+12 i^{2}}{4+6 i-6 i-9 i^{2}}
$$

$$
=\frac{10+23 i+12(-1)}{4-9(-1)}
$$

$$
=\frac{-2+23 i}{13}
$$

$$
=-\frac{2}{13}+\frac{23}{13} i
$$

Multiply by the complex conjugate of the denominator

Expand both
brackets
Group i terms, replace the i^{2} terms with -1 (use brackets to avoid mistakes)

Simplify terms
Split into two parts (this is useful for later topics!)

Complex Numbers

You can find the complex conjugate of a complex number

If the roots a and b of a quadratic equation are complex, a and b will always be a complex conjugate pair
\rightarrow You can find what a quadratic equation was by using its roots
\rightarrow Let us start by considering a quadratic equation with real solutions...

Add the roots together
$(-5)+(-2)$

\uparrow
Adding the roots gives the negative of the 'b' term

Multiply the roots

$$
(-5) \times(-2)
$$

$$
=10
$$

Multiplying the roots gives the
'c' term

This will work every time!
\rightarrow If you have the roots of a quadratic equation:
\rightarrow Add them and reverse the sign to find the ' b ' term
\rightarrow Multiply them to find the ' c ' term

Complex Numbers

You can find the complex conjugate of a complex number

If the roots a and b of a quadratic equation are complex, a and b will always be a complex conjugate pair
\rightarrow You can find what a quadratic equation was by using its roots
\rightarrow Let us start by considering a quadratic equation with real solutions...

Add the roots together
$(-6)+(4)$

\uparrow
Adding the roots gives the negative of the 'b' term

Multiply the roots

$$
\begin{aligned}
& (-6) \times(4) \\
& =-24 \\
& \uparrow \\
& \text { Multiplying the } \\
& \text { roots gives the } \\
& \text { 'c' term }
\end{aligned}
$$

Complex Numbers

You can find the complex conjugate of a complex number

Find the quadratic equation that has roots $3+5 i$ and $3-5 i$

Add the roots together

$$
\begin{aligned}
& (3+5 i)+(3-5 i) \\
& =6
\end{aligned}
$$

So the 'b'term is -6

Multiply the roots

So the 'c 'term is 34
Now you have the b and c coefficients, you can write the equation!
The equation is therefore:
$x^{2}-6 x+34=0$

Complex Numbers

You can represent complex numbers on an Argand diagram

A grid where values for x and y can be plotted is known as a Cartesian set of axes (after Rene Descartes)

An Argand diagram is very similar, but the x-axis represents real numbers and the y-axis represents imaginary numbers.

Complex numbers can be plotted on an Argand diagram, by considering the real and imaginary parts as coordinates

Complex Numbers

You can represent complex numbers on an Argand diagram

Represent the following complex numbers on an Argand diagram:

$$
\begin{aligned}
& z_{1}=2+5 i \\
& z_{2}=3-4 i \\
& z_{3}=-4+i
\end{aligned}
$$

Find the magnitude of $|O A|,|O B|$ and $|O C|$, where O is the origin of the Argand diagram, and A, B and C are z_{1}, z_{2} and z_{3} respectively
\rightarrow You can use Pythagoras' Theorem to find the magnitude of the distances

$|O A|=\sqrt{2^{2}+5^{2}}$

$$
|O A|=\sqrt{29}
$$

$$
|O C|=\sqrt{4^{2}+1^{2}}
$$

$|O B|=\sqrt{3^{2}+4^{2}}$
$|O C|=\sqrt{17}$
$|O B|=5$

Complex Numbers

You can represent complex numbers on an Argand diagram

$$
z_{1}=4+i \quad z_{2}=3+3 i
$$

Show z_{1}, z_{2} and $z_{1}+z_{2}$ on an Argand diagram

$$
z_{1}+z_{2}
$$

$$
\begin{aligned}
& (4+i)+(3+3 i) \\
& \quad=7+4 i
\end{aligned}
$$

Notice that vector $z_{1}+z_{2}$ is effectively the diagonal of a parallelogram

Complex Numbers

You can represent complex numbers on an Argand diagram

$$
z_{1}=2+5 i \quad z_{2}=4+2 i
$$

Show z_{1}, z_{2} and $z_{1}-z_{2}$ on an Argand diagram

$$
z_{1}-z_{2}
$$

$$
(2+5 i)-(4+2 i)
$$

$$
=-2+3 i
$$

Vector $z_{1}-z_{2}$ is still the diagram of a parallelogram
\rightarrow One side is z_{1} and the other side is $-z_{2}$ (shown on the diagram)

Complex Numbers

You can find the value of r, the modulus of a complex number z, and the value of θ, which is the argument of z

The modulus of a complex number is its magnitude - you have already seen how to calculate it by using Pythagoras' Theorem
\rightarrow It is usually represented by the letter
r

The argument of a complex number is the angle it makes with the positive real axis
\rightarrow The argument is usually measured in radians
\rightarrow It will be negative if the complex number is plotted below the horizontal axis

Complex Numbers

You can find the value of r, the modulus of a complex number z, and the value of θ, which is the argument of z

Find, to two decimal places, the modulus and argument of $z=4+5 i$

Use Pythagoras' Theorem to find r
$r=\sqrt{4^{2}+5^{2}}$
$r=\sqrt{41}$
$r=6.40(2 d p)$

Use Trigonometry to find $\arg z$
$\operatorname{Tan} \theta=\frac{O}{A}$
$\operatorname{Tan} \theta=\frac{5}{4}$ Sub in values
$\theta=0.90$ radians $(2 d p)$
Calculate in radians

Complex Numbers

You can find the value of r, the modulus of a complex number z, and the value of θ, which is the argument of z

Find, to two decimal places, the modulus and argument of $z=-2+4 i$
y (Imaginary)

Use Pythagoras' Theorem to find r
$r=\sqrt{2^{2}+4^{2}}$
$r=\sqrt{20}$
$r=4.47(2 d p)$

Calculate
Work out as a
decimal (if needed)

Use Trigonometry to find $\arg z$
$\operatorname{Tan} \theta=\frac{O}{A}$
$\operatorname{Tan} \theta=\frac{4}{2}$
$\theta=1.11$ radians $(2 d p)$ Sub in value
$\pi-1.11=2.03$ radians
Calculate in radians
Subtract from π to find the required angle (remember π radians $=180^{\circ}$)
$\arg Z=2.03$

Complex Numbers

You can find the value of r, the modulus of a complex number z, and the value of θ, which is the argument of z

Find, to two decimal places, the modulus and argument of $z=-3-3 i$

Use Pythagoras' Theorem to find r
$r=\sqrt{3^{2}+3^{2}}$
$r=\sqrt{18}$
$r=4.24(2 d p)$

Use Trigonometry to find arg z
$\operatorname{Tan} \theta=\frac{O}{A}$
$\operatorname{Tan} \theta=\frac{3}{3}$
$\theta=\frac{\pi}{4}$ radians $(2 d p)$
$\pi-\frac{\pi}{4}=\frac{3 \pi}{4}$ radians
$\arg z=-\frac{3 \pi}{4}$
Calculate in radians
Subtract from π to find the required angle (remember π radians $=180^{\circ}$)
As the angle is below the x-axis, its written as negative

Complex Numbers

y (Imaginary)

You can find the modulus-argument form of the complex number z

You have seen up to this point that a complex number z will usually be written in the form:

$$
z=x+i y
$$

The modulus-argument form is an alternative way of writing a complex number, and it includes the modulus of the number as well as its argument.

The modulus-argument form looks like this:

$$
z=r(\cos \theta+i \sin \theta)
$$

r is the modulus of the number
θ is the argument of the number

By GCSE Trigonometry:

$$
\mathrm{S}^{\mathrm{O}} \mathrm{H} \longrightarrow \mathrm{Opp}=H y p \times \sin \theta=r \sin \theta
$$

$$
C^{\mathrm{A}} \mathrm{H} \longrightarrow A d j=H y p \times \cos \theta=r \cos \theta
$$

$$
\left.\begin{array}{l}
z=r \cos \theta+i r \sin \theta \\
z=r(\cos \theta+i \sin \theta)
\end{array}\right\} \text { Factorise }
$$

COMEDEXAS

You can find the modulus-argument form of the complex number z

Express the numbers following numbers in the modulus argument form:

$$
\begin{gathered}
z_{1}=1+i \sqrt{3} \\
z_{2}=-3-3 i \\
z_{1}=2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)
\end{gathered}
$$

Modulus for \mathbf{z}_{1}

$$
\begin{array}{r}
\sqrt{1^{2}+\sqrt{3}^{2}} \quad \operatorname{Tan}^{-1}\left(\frac{\sqrt{3}}{1}\right) \\
=2 \\
=\frac{\pi}{3} \\
z_{1}=r(\cos \theta+i \sin \theta) \\
z_{1}=2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)
\end{array}
$$

Argument for z_{1}

COMEDEXAS

y (Imaginary)
You can find the modulus-argument form of the complex number z

Express the numbers following numbers in the modulus argument form:

$$
\begin{gathered}
z_{1}=1+i \sqrt{3} \\
z_{2}=-3-3 i \\
z_{1}=2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right) \\
z_{2}=3 \sqrt{2}\left(\cos \left(-\frac{3 \pi}{4}\right)+i \sin \left(-\frac{3 \pi}{4}\right)\right)
\end{gathered}
$$

Modulus for z_{2}

$$
\begin{gathered}
\sqrt{3^{2}+3^{2}} \\
=\sqrt{18} \\
=3 \sqrt{2}
\end{gathered}
$$

Argument for z_{2}

$$
\begin{aligned}
& \operatorname{Tan}^{-1}\left(\frac{3}{3}\right) \begin{array}{c}
\text { Remember the } \\
\text { angle you actually } \\
\text { want! }
\end{array} \\
& =\frac{\pi}{4} \longrightarrow=-\frac{3 \pi}{4} \\
& \sin \theta) \\
& \left.\left.\frac{3 \pi}{4}\right)+i \sin \left(-\frac{3 \pi}{4}\right)\right)
\end{aligned}
$$

$$
\begin{gathered}
z_{2}=r(\cos \theta+i \sin \theta) \\
z_{2}=3 \sqrt{2}\left(\cos \left(-\frac{3 \pi}{4}\right)+i \sin \left(-\frac{3 \pi}{4}\right)\right)
\end{gathered}
$$

Compernems

You can find the modulus-argument form of the complex number z

Express the numbers following numbers in the modulus argument form:

$$
\begin{gathered}
z_{1}=1+i \sqrt{3} \\
z_{2}=-3-3 i \\
z_{1}=2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right) \\
z_{2}=3 \sqrt{2}\left(\cos \left(-\frac{3 \pi}{4}\right)+i \sin \left(-\frac{3 \pi}{4}\right)\right)
\end{gathered}
$$

Write down the value of $\left|z_{1} z_{2}\right|$

$$
\begin{aligned}
\left|z_{1} z_{2}\right| & =\left|z_{1}\right|\left|z_{2}\right| \\
& =2 \times 3 \sqrt{2} \\
& =6 \sqrt{2}
\end{aligned}
$$

Compernems

y (Imaginary)
You can find the modulus-argument form of the complex number z

A complex number is represented in the modulus-argument form as:

$$
z=4\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)
$$

Write the number in the form:

$$
z=x+i y
$$

Start by sketching the number on an Argand diagram
$\rightarrow \quad$ The modulus is 4
\rightarrow The angle is positive and less than $\pi / 2$, so the point is somewhere in the top right section
\rightarrow Work out x and y using Trigonometry...

Complex Numbers

You can solve problems involving complex numbers

Problems can be solved by equating the real and imaginary parts of a complex equation
\rightarrow This technique can also be used to square root a number

Given that:

$$
3+5 i=(a+i b)(1+i)
$$

Find the real values of a and b

$$
\begin{aligned}
& 3+5 i=(a+i b)(1+i) \\
& 3+5 i=a+a i+b i+i^{2} b \\
& 3+5 i=a+a i+b i+(-1) b \\
& 3+5 i=a+a i+b i+-b \\
& 3+5 i=a-b+a i+b i \\
& 3+5 i=a-b+i \quad a+b)
\end{aligned}\left\{\begin{array}{l}
\text { Multiply out } \\
\text { the bracket } \\
\text { Replace i2 } \\
\text { Remove the bracket } \\
\text { Move the real and }
\end{array}\right.
$$

As the equations balance, the real and imaginary parts will be the same on each side
\rightarrow Compare them and form equations

1) $a-b=3$
2) $a+b=5$

$$
2 a=8
$$

Add the equations together
Solve for a

$$
a=4
$$

$$
b=1
$$

Use a to find b

Complex Numbers

You can solve problems involving complex numbers

Problems can be solved by equating the real and imaginary parts of a complex equation
\rightarrow This technique can also be used to square root a number

Find the square roots of $3+4 i$
\rightarrow Let the square root of $3+4 i$ be given by $a+i b$

$$
\begin{aligned}
& \sqrt{3+4 i}=a+i b \\
& 3+4 i=(a+i b)^{2} \\
& 3+4 i=(a+i b)(a+i b) \\
& 3+4 i=a^{2}+a b i+a b i+i^{2} b^{2} \\
& 3+4 i=a^{2}-b^{2}+2 a b i
\end{aligned} \begin{gathered}
\text { Square both sides } \\
\text { Write as a double } \\
\text { bracket } \\
\text { M racket real terms and } \\
\text { imaginary terms } \\
\text { together }
\end{gathered}
$$

As the equations balance, the real and imaginary parts will be the same on each side
\rightarrow Compare them and form equations

1) $a^{2}-b^{2}=3$
2) $2 a b=4$

$$
\begin{array}{r}
a b=2 \\
b=\frac{2}{a}
\end{array}\left\{\begin{aligned}
\text { Divide by } 2 \\
\text { Divide by a }
\end{aligned}\right.
$$

Complex Numbers

You can solve problems involving complex numbers

Problems can be solved by equating the real and imaginary parts of a complex equation
\rightarrow This technique can also be used to square root a number

Find the square roots of $3+4 i$
\rightarrow Let the square root of $3+4 i$ be given by $a+i b$

$$
a+i b
$$

Use each pair of a and b to find the square roots

$$
2+i \quad-2-i
$$

1) $a^{2}-b^{2}=3$
2) $b=\frac{2}{a}$

$$
\begin{aligned}
& \begin{aligned}
a^{2}-b^{2} & =3 \\
a^{2}-\left(\frac{2}{a}\right)^{2} & =3
\end{aligned} \\
& a^{2}-\frac{4}{a^{2}}=3 \\
& a^{4}-4=3 a^{2} \\
& a^{4}-3 a^{2}-4=0 \\
& \left(a^{2}-4\right)\left(a^{2}+1\right)=0 \\
& a^{2}=4 \text { or } \text { a>< } 1 \\
& a=2 \text { or }-2 \\
& b=1 \text { or }-1 \\
& \text { Replace } b \text { from the } \\
& \text { second equation } \\
& \text { Square the bracke } t \\
& \text { Multiply each term by } a^{2} \\
& \text { Subtract } 3 a^{2} \\
& \text { You can factorise this like } \\
& \text { you would a quadratic } \\
& \text { Each bracket can give } \\
& \text { solutions } \\
& \text { But we want the real } \\
& \text { one so ignore } x^{2}=-1 \\
& \text { Use these to find their } \\
& \text { corresponding } b \text { values }
\end{aligned}
$$

REMINDER FROM BEFORE

Complex Numbers

You can find the complex conjugate of a complex number

If the roots a and b of a quadratic equation are complex, a and b will always be a complex conjugate pair
\rightarrow You can find what a quadratic equation was by using its roots
\rightarrow Let us start by considering a quadratic equation with real solutions...

Add the roots together
$(-5)+(-2)$

\uparrow
Adding the roots gives the negative of the 'b' term

Multiply the roots
$(-5) \times(-2)$
$=10$

Multiplying the roots gives the
'c' term

This will work every time!
\rightarrow If you have the roots of a quadratic equation:
\rightarrow Add them and reverse the sign to find the ' b ' term
\rightarrow Multiply them to find the ' c ' term

REMINDER FROM BEFORE

Complex Numbers

You can find the complex conjugate of a complex number

Find the quadratic equation that has roots $3+5 i$ and $3-5 i$

Add the roots together
$(3+5 i)+(3-5 i)$
$=6$
So the 'b'term is -6

Multiply the roots

So the ' c 'term is 34
Now you have the b and c coefficients, you can write the equation!
The equation is therefore:
$x^{2}-6 x+34=0$

Complex Numbers

You can solve some types of polynomial equation with real coefficients

You have seen that if the roots of an equation are complex, they occur as a complex conjugate pair

If you know one complex root of a quadratic equation, you can find the whole equation itself
$7+2 i$ is one of the roots of a quadratic equation with real coefficients. Find the equation.
\rightarrow You can use a method from earlier in the chapter for this type of question
\rightarrow If $7+2 i$ is one root, the other must be $7-2 \mathrm{i}$

$$
7+2 i \quad 7-2 i
$$

Add them together
$(7+2 i)+(7-2 i)$
$=14$
So the 'b'term is -14

Multiply them

$$
\begin{aligned}
& (7+2 i)(7-2 i) \\
& =49+14 i-14 i-4 i^{2} \\
& =49-4(-1) \\
& =53
\end{aligned}
$$

So the ' c 'term is 53

Now you know b and c you can write the equation

$$
x^{2}-14 x+53=0
$$

Complex Numbers

You can solve some types of polynomial equation with real coefficients

Show that $x=2$ is a solution of the cubic equation:
$x^{3}-6 x^{2}+21 x-26=0$
Hence, solve the equation completely.

As subbing in a value of 2 makes the equation balance, $x=2$ must be a solution

Complex Numbers

You can solve some types of polynomial equation with real coefficients

Show that $x=2$ is a solution of the cubic equation:
$x^{3}-6 x^{2}+21 x-26=0$
Hence, solve the equation completely.
\rightarrow As $x=2$ is a solution, the equation must have $(x-2)$ as a factor
\rightarrow Divide the expression by $(x-2)$ in order to help factorise it

Divide x^{3} by x
Multiply the divisor by the answer and write it beneath

Subtract this from the original equation

Now divide $-4 x^{2}$ by x
Multiply the divisor by this and continue these steps until you're finished!

$$
\begin{gathered}
{\frac{x^{3}-2 x^{2}}{-4 x^{2}+21 x-26}+\underbrace{0}_{\frac{13 x}{13 x-26}-26}}_{-4 x^{2}+8 x}^{-} \\
x^{3}-6 x^{2}+21 x-26 \\
=(x-2)\left(x^{2}-4 x+13\right)
\end{gathered}
$$

Complex Numbers

You can solve some types of polynomial equation with real coefficients

Show that $x=2$ is a solution of the cubic equation:
$x^{3}-6 x^{2}+21 x-26=0$
Hence, solve the equation completely.
\rightarrow As $x=2$ is a solution, the equation must have $(x-2)$ as a factor
\rightarrow Divide the expression by $(x-2)$ in order to help factorise it

$$
x^{3}-6 x^{2}+21 x-26=0
$$

$$
(x-2)\left(x^{2}-4 x+13\right)=0
$$

$$
\left.\left.\begin{array}{rrr}
x-2=0 \\
x=2 \\
\text { We already knew } \\
\text { this solution! }
\end{array} \quad \begin{array}{rl}
x^{2}-4 x+13 & =0 \\
(x-2)^{2}+9 & =0 \\
(x-2)^{2} & =-9 \\
x-2 & = \pm 3 i \\
x & =2 \pm 3 i
\end{array}\right\} \begin{array}{c}
\text { Use } \\
\text { completing } \\
\text { the square } \\
\text { Subtract }
\end{array}\right\} \begin{gathered}
\text { Square } \\
\text { root }
\end{gathered}
$$

The solutions of the equation $x^{3}-6 x^{2}+21 x-26=0$ are:

$$
x=2 \quad x=2+3 i \quad \text { and } \quad x=2-3 i
$$

Complex Numbers

You can solve some types of polynomial equation with real coefficients

Given that - 1 is a root of the equation:

$$
x^{3}-x^{2}+3 x+k=0
$$

Find the other two roots of the equation.
\rightarrow If we substitute -1 in , the equation will balance...

$$
x^{3}-x^{2}+3 x+5=0
$$

$$
\begin{array}{r}
x^{3}-x^{2}+3 x+k=0 \\
(-1)^{3}-(-1)^{2}+3(-1)+k=0 \\
-1-1-3+k=0 \\
k=5
\end{array}\left\{\begin{array}{c}
\text { Sub in } x=-1 \\
\text { Calculate each } \\
\text { part } \\
\text { Rearrange to } \\
\text { fin d } \mathrm{k}
\end{array}\right.
$$

We now know the actual equation

$$
x^{3}-x^{2}+3 x+5=0
$$

Complex Numbers

You can solve some types of polynomial equation with real coefficients

Given that - 1 is a root of the equation:

$$
x^{3}-x^{2}+3 x+k=0
$$

Find the other two roots of the equation.
\rightarrow We can now solve the equation

$$
x^{3}-x^{2}+3 x+5=0
$$

\rightarrow As -1 is a root, $(x+1)$ will be a factor of the equation

Divide x^{3} by x

Multiply the divisor by the answer and write it beneath

Subtract this from the original equation

Now divide $-2 x^{2}$ by x
Multiply the divisor
by this and continue
these steps until
you're finished!

Complex Numbers

You can solve some types of polynomial equation with real coefficients

Given that - 1 is a root of the equation:

$$
x^{3}-x^{2}+3 x+k=0
$$

Find the other two roots of the equation.
\rightarrow We can now solve the equation

$$
x^{3}-x^{2}+3 x+5=0
$$

\rightarrow As -1 is a root, $(x+1)$ will be a factor of the equation

$$
(x+1)\left(x^{2}-2 x+5\right)=0
$$

$$
x^{3}-x^{2}+3 x+5=0
$$

$$
(x+1)\left(x^{2}-2 x+5\right)=0
$$

Either this
bracket is 0

$$
\begin{aligned}
x+1 & =0 & x^{2}-2 x+5 & =0 \\
x & =-1 & (x-1)^{2}+4 & =0
\end{aligned}
$$

We already knew this solution!

$$
\begin{aligned}
x^{2}-2 x+5 & =0 \\
(x-1)^{2}+4 & =0 \\
(x-1)^{2} & =-4 \\
x-1 & = \pm 2 i \\
x & =1 \pm 2 i
\end{aligned} \quad \begin{gathered}
\text { Use } \\
\text { completing } \\
\text { the square } \\
\text { Subtract } 4
\end{gathered} \quad \begin{gathered}
\text { Square } \\
\text { root }
\end{gathered}
$$

The solutions of the equation $x^{3}-x^{2}+3 x+5=0$ are:

$$
x=-1 \quad x=1+2 i \quad \text { and } \quad x=1-2 i
$$

Complex Numbers

You can solve some types of polynomial equation with real coefficients

Complex Numbers

You can solve some types of polynomial equation with real coefficients

You can also solve a quartic equation using this method
\rightarrow A quartic equation has an x power of 4 , and will have a total

$$
\text { of } 4 \text { roots }
$$

For a quartic equation, either:
\rightarrow All 4 roots are real
$\rightarrow 2$ roots are real and 2 are complex, forming a complex conjugate pair
\rightarrow All 4 roots are complex and form 2 complex conjugate pairs

Complex Numbers

You can solve some types of polynomial equation with real coefficients

Given that $3+i$ is a root of the quartic equation:
$2 x^{4}-3 x^{3}-39 x^{2}+120 x-50=0$
Solve the equation completely.
As one root is $3+i$, we know that another root will be $3-i$
\rightarrow We can use these to find an expression which will factorise into the original equation

$$
3+i \quad 3-i
$$

Add them together

$(3+i)+(3-i)$
$=6$
So the 'b'term is -6

Multiply them
$(3+i)(3-i)$
$=9+3 i-3 i-i^{2}$
$=9-(-1)$
$=10$
So the ' c 'term is 10

Now you know b and c you can write an expression that will divide into the original equation

$$
x^{2}-6 x+10
$$

Complex Numbers

You can solve some types of polynomial equation with real coefficients

Given that $3+i$ is a root of the quartic equation:
$2 x^{4}-3 x^{3}-39 x^{2}+120 x-50=0$
Solve the equation completely.
As one root is $3+i$, we know that another root will be 3 - i
\rightarrow We can use these to find an expression which will factorise into the original equation

$$
x^{2}-6 x+10 \text { is a factor }
$$

\rightarrow Divide the original equation by this!

$2 x^{4}-12 x^{3}+20 x^{2}$

$$
9 x^{3}-59 x^{2}+120 x-50
$$

$$
9 x^{3}-54 x^{2}+90 x
$$

$$
\begin{array}{r}
-5 x^{2}+30 x-50 \\
-5 x^{2}+30 x-50
\end{array}
$$

0
We have now factorised the original equation into 2 quadratics

$$
\begin{array}{r}
2 x^{4}-3 x^{3}-39 x^{2}+120 x-50 \\
=\left(x^{2}-6 x+10\right)\left(2 x^{2}+9 x-5\right)
\end{array}
$$

You can solve some types of polynomial equation with real coefficients

Given that $3+i$ is a root of the quartic equation:

$$
2 x^{4}-3 x^{3}-39 x^{2}+120 x-50=0
$$

Solve the equation completely.
As one root is $3+i$, we know that another root will be 3 - i
\rightarrow We can use these to find an expression which will factorise into the original equation

$$
x^{2}-6 x+10 \text { is a factor }
$$

\rightarrow Divide the original equation by this!

$$
\left(x^{2}-6 x+10\right)\left(2 x^{2}+9 x-5\right)=0
$$

We already have
the solutions for
this bracket!

$$
\begin{aligned}
& 3+i \\
& 3-i
\end{aligned}
$$

We need to find the solutions for
this one!

$$
x=-\frac{1}{2} \quad \text { or } \quad x=5
$$

$$
2 x^{4}-3 x^{3}-39 x^{2}+120 x-50=0
$$

Solutions are: $x=3+i$
All these will give the answer 0 when substituted in!

$$
\begin{aligned}
& x=3-i \\
& x=-\frac{1}{2} \\
& x=5
\end{aligned}
$$

Summary

- You have been introduced to imaginary and complex numbers
- You have seen how these finally allow all quadratic equations to be solved
- You have learnt how to show complex numbers on an Argand diagram
- You have seen how to write the modulus-argument form of a complex number
- You have also seen how to solve cubic and quartic equations using complex numbers

