Engineering Single and Double at Samuel Whitbread Academy

Curriculum Sequencing

Single & Double units

<u>Unit 1</u>

Unit 1		
		 Solve, transpose and simplify equations.
		 Indices and logarithms:
		• Application to problems involving exponential growth and decay.
A Algebraic and trigonometric mathematical methods		 Linear equations and straight line graphs:
	A1 Algebraic methods	 Factorisation and quadratics:
		• Circular measure:
		• Triangular measurement:
	A2 Trigonometric methods	Mensuration:
		Non-concurrent coplanar forces:
B Static engineering systems		Simply supported beams:
	B1 Static engineering systems	Reactions:

		direct stress and strain
		shear stress and strain
		tensile and shear strength
	B2 Loaded components	elastic constants
		kinetic parameters and principles:
		dynamic parameters and principles:
C Dynamic engineering systems		angular parameters:
	C1 Dynamic engineering systems	 lifting machines, including inclined planes, scissor jacks, pulleys:
		 submerged surfaces in fluid systems:
D Fluid engineering systems		• immersed bodies:
	D1 Fluid systems	 fluid flow in a gradually tapering pipe:
		conductance
		conventional current flow
		charge/electron flow
E Static and direct current electricity and circuits		• voltage
		• Coulomb's law
	E1 Static and direct current electricity	 factors affecting resistance, including conductor length, cross sectional area, resistivity, and temperature coefficient of resistance

		 resistors, including function, fixed, variable, values
		electric field strength, including uniform electric fields
		factors affecting capacitance, including plate spacing, plate area, permittivity
		 capacitors – typical capacitance values and construction, including plates, dielectric materials and strength, flux density, permittivity.
		• Ohm's law
		• Power
		• Efficiency
		Kirchhoff voltage and current laws
		• Charge, voltage, capacitance and energy stored in capacitors
		 RC transients (capacitor/resistor), charge and discharge, including exponential growth and decay of voltage and current, and time constant
	E2 Direct current circuit theory	• Diodes, including forward and reverse bias characteristics
		• DC power sources, including cells, batteries, stabilised power supply, photovoltaic cell/array and internal resistance
		at least five resistors in series and parallel combinations
		• DC circuits containing resistors and two power sources
	E3 Direct current networks	DC power source with at least two capacitors connected (series, parallel, combination).
F Magnetism and electromagnetic induction	F1 Magnetism	• magnetic field:

		 electromagnetic induction and applications:
G Single-phase alternating current		waveform characteristics
	G1 Single-phase alternating current theory	• AC principles

<u>Unit 2</u>

Unit 2		
	A1 Common engineering processes	Transforming ideas and materials into products or services
		 A product and a service are closely aligned concept
		 Common processes used to create engineered products
Learning aim A: Examine common engineering processes to create products or deliver services safely and effectively as a team		Common processes used in engineering services
	A2 Health and safety requirements	 Current Health and Safety at Work legislation
		 Current Reporting of Injuries, Diseases and Dangerous Occurrences Regulations (RIDDOR)
		• Current Personal Protective Equipment (PPE) at Work Regulations
		• Current Control of Substances Hazardous to Health Regulations (COSHH) –
		Current Manual Handling Operations Regulations (MHOR)

	A3 Human factors affecting the performance of engineering processes	 Understanding that human factors affect the productivity of processes
		Understanding that human factors affect the performance of individuals and teams
	B1 Principles of engineering drawing	Attributes of orthographic projections
		• Drawing conventions or other relevant international equivalents
		 coordinates – absolute, relative, polar
Learning aim B: Develop two-dimensional computer-aided drawings that can be used in engineering processes	B2 2D computer-aided drawing	 drawing template – border, title block with all necessary information
		 layers – names, line types, colours, visibility
		• commands
		• cross-hatching
	C1 Principles of effective teams	Good communication
		• Planning
Learning aim C: Carry out engineering processes safely to manufacture a product or to deliver a service effectively as a team		Motivation
		Working with others
		Working environment
	C2 Team set-up and organisation	• A team is defined as containing three or more individual members who have a shared common objective to complete.
		 Strengths and limitations of team members

		Allocation of responsibilities
		 Timescales – planning the activities
		 Objectives – team targets.
		identification of hazards
		 assessing risk by determining how hazards can cause injury
	C3 Health and safety risk assessment	 choosing and using appropriate control measures and precautions to reduce risk
		recording all findings
		 reviewing the risk assessment after new equipment/work activities have been undertaken, at regular intervals.
	C4 Preparation activities for batch manufacture or batch service delivery	 A batch is defined as a quantity of three or more of a product or service delivered together
		Understanding the requirements of production plans
	C5 Delivery of manufacturing or service engineering processes	 For engineered products or engineering services
		• Examples of engineered products
		 Selecting, setting up and using engineering equipment to manufacture engineered products
		• Examples of engineering services
		 Selecting, setting up and using engineering equipment to deliver engineering services

<u>Unit 3</u>

Unit 3		
	A1 Design triggers	 market pull/technology push (product and process)
		• demand
		• profitability
		• innovation
A Design triggers, challenges, constraints and opportunities, and materials and processes		• market research
		 product/process performance issues
		• sustainability (carbon footprint)
		• designing out risk.
	A2 Design challenges	 reduction of energy wasted during design of an engineered product
		 reduction of energy wasted during operation of an engineered product
		 reduction of physical dimensions
		• reduction of product mass

		 increase in component efficiency
		 energy recovery features
		 reduced product life cycle costs
		 integration of different power sources for vehicles
		 reduced use of resources in high-value manufacturing
		 sustainability issues throughout the product lifecycle (raw materials, manufacture, packaging and distribution, use and reuse, end of life)
		 designing out risk (for individual employees and customers).
		 reasons for selecting different solutions for equipment interfaces (mechanical, electrical, hydraulic, software)
	A3 Equipment level and system level constraints and opportunities	• systems integration compromises (cooling, location for optimum equipment performance, bonding, centre of gravity, electrical and electronic compatibility)
		• equipment product design specification (PDS) (shortcomings absorbed at system level, electromagnetic compatibility (EMC), mass, cooling)
		 cost effective manufacture (capital outlay, use of tooling, set up cost)
	A4 Material properties	mechanical properties

hyvical properties	
• thermal properties	
electrical and magnetic properties	
behaviour of advanced materials (bio materials, sma alloys, nanoengineered materials)	rt
• modes of failure	
• surface treatments and coating	
• lubrication (purposes, regimes).	
• linkages (types, mechanical advantage, examples fro nature)	m
mechanical motion (linear, rotary, reciprocating, osc A5 Mechanical power transmission	llating)
• power sources (mechanical, electrical, energy from r	ature)
• control of power transmission (sensors, actuators, se motors).	rvo
processes for metals (additive, moulding, machining, forming, casting, powder metallurgy, joining, assembly A6 Manufacturing processes)
• processes • processes • processes for polymers (additive, casting, moulding, extrusion, thermoforming)	

		 processes for ceramics (additive, casting, forming) processes for composites (layup, moulding, automated tow placement) effects of processing (recrystallisation, grain structure, alloying elements, material combinations, process parameters) scales of manufacture (one-off, small batch, large batch, timesus)
	B1 Design for a customer	 mass, continuous). types of customer (internal, external) product and service requirements product design specification/criteria commercial protection (patents, registration, copyright,
B Interpreting a brief into operational requirements and analysing existing products	B2 Regulatory constraints and opportunities	 trademarks). legislation, standards, codes of practice, national and international certification requirements environmental constraints (sustainability, carbon footprint, product life cycle) health and safety, security (product and process).
	B3 Market analysis	 unique selling point (USP) benefits of the design

		• obsolescence.
		• product form
		• product functionality
		technical considerations
	B4 Performance analysis	 choice of materials and components
		• environmental sustainability (impact, carbon footprint)
		 interactions with other areas/components
		 likelihood of failure or wear.
	B5 Manufacturing analysis	 processes for manufacturing/assembly
		 manufacturing requirements
		• quality indicators
		 environmental sustainability (impact, carbon footprint)
		 design for manufacture.
C Using an iterative process to design ideas and develop a	C1 Design proposals	 technical design criteria

modified product proposal		• idea generation (context, creativity, range)
		 initial design ideas (fitness for purpose, refinements, recognition of constraints)
		developed design idea
		• use of information sources.
		• freehand sketching and diagrams (2D and 3D, illustrations, technical)
		 graphical techniques (charts, keys, shading, animation, symbols, conventions)
	C2 Communicating designs	• written skills (annotation, technical language, interpreting results)
		 documentation (detail and assembly orthographic projections, specifications, parts list, materials list, production plan, circuit/block diagrams, flowchart, design log).
		• refining a task or process (analysing, adapting, enhancing)
	C3 Iterative development process	• cyclic process (logical non-linear approach, focus on product design specification/criteria).
	D1 Statistical methods	 statistical measurement (discrete/continuous, mean, median, mode, variance)
D Technical justification and validation of the design solution		• data handling
	D2 Validating designs	 objective referencing against product design specification/criteria
		objective referencing against weighted matrix

	 indirect benefits and opportunities
	 balancing benefits and opportunities with constraints
	 design for manufacturing
	• further modifications

<u>Unit 10</u>

Unit 10		
Learning aim A: Develop a three-dimensional computer-aided model of an engineered product that can be used as part of	A1 3D parametric modelling	• Configure the parametric modeller, including origin, units, snap and grid, correct format, project files, selection of file types and planes, e.g. XY, XZ and YZ
other engineering processes		• Sketching commands, including line, arc, centre line, construction line, circle, fillet, and dimension

		 Display commands, including pan, zoom, and orbit.
		• Editing commands, including erase, extend, trim, and rotate.
		• Construction commands
		 Creation of 2D sketches, including basic shape, dimensioning, modifications, and geometric constraints
	A2 Develop 3D components	 2D sketch to a 3D model, including rotate about an axis, revolve, extrude, and Boolean manipulation
		• 3D features
		• Combination of solid objects, including Boolean operations.

		• 2D sketching on 3D faces.
		 Modification of the 3D model, including addition of features to existing geometry
		• Application of materials
		 Placement of 3D components, including degrees of freedom, XYZ translational freedom and XYZ rotational freedom
	A3 Develop a 3D model	 Assembly constraints and the relationships between components
		 Modification to 3D components due to assembly constraints
		 Consideration of assembly, including storyboarding, component relationship.

	A4 Output of drawings from a model	 2D paper space, including drawing template, scale, size, title block, editing creation of component drawings, including an orthogonal base view and projected views, 3D solid model/surface model, appropriate scale, detail views, dimensioning, and centre lines creation of an assembly drawing, including parts list or bill of materials (BOM).
	B1 2D drawing commands	 Configuration of a 2D CAD system Use of drawing commands Use of display commands, including pan, zoom Use of modify commands, including erase, trim, mirror, move, array, copy, undo and stretch
Learning aim B: Develop two-dimensional detailed computer- aided drawings of an engineered product that can be used as part of other engineering processes	B2 Development of 2D engineering drawings	 Drawing commands, including line types, centre line, dashed, text, offset, hatching and editing of hatching. Use of layers, including manipulation, creation, switching on/off, frozen and locked. Use of blocks/symbols, including creation of blocks/symbols, symbols library, insertion of blocks Use of modify commands, including mirror, pan, scale, chamfer, and fillet. Use of dimensioning, including dimension styles,

		dimensions, and editing of dimensions.
	B3 Output of 2D drawings	• set up of output parameters, including paper size, units, plot area, scale, orientation, paper space, model space, model and layout drawing, and template
		• creation of component drawings, including orthogonal views, appropriate scale, sectional view, dimensioning, and centre lines
		 creation of an assembly drawing, including general arrangement, parts list or bill of materials (BOM)
		• Configuration of the parametric modeller, including origin, units, snap and grid, correct format, project files, selection of file types, and planes, e.g. XY, XZ and YZ
Learning aim C: Develop a three-dimensional computer-aided model for a thin walled product and a fabricated product that can be used as part of other engineering processes	C1 3D modelling commands	 Creation of 2D sketches, including basic shape, dimensioning, modifications, and geometric constraints
		• 2D sketch to a 3D model, including rotate about an axis, revolve, extrude, and Boolean manipulation
		 Sheet metal parameters, including folding rule, bending rule, corner reliefs.

	 Use of sketching commands, including line, arc, centre line, construction line, circle, fillet, and dimension
	• Use of construction sheet metal commands, including face, material thickness, bends, flange, holes, slots, 3D modify, e.g. hole, move, face, chamfer
	• Use of construction thin walled commands, including 3D creation, imprint/shell, Boolean manipulation, sweep, loft, shell, work planes, emboss, 3D modify, e.g. hole, move, face, chamfer.
	 Use of display commands, including pan, zoom, and orbit.
	 Use of editing commands, including erase, extend, trim, and rotate.
C2 Develop 3D components	 Create 2D sketches, including basic shape, dimensioning, modifications, and geometric constraints.
	 2D sketch to a 3D component and sheet metal fabrication, including folding, bending, slots, revolve, extrude, and Boolean manipulation.

	3D features of the components
	 3D features of the thin walled components
	 Placing 3D components, including degrees of freedom, XYZ translational freedom and XYZ rotational freedom.
	 Assembly constraints and the relationships between components
C3 Development of a 3D model	
	 Modification to 3D components due to assembly constraints
	 Consideration of assembly, including storyboarding, component relationship.
	 Use of rendering, including render, shadows, reflections, lights, materials, textures, ray tracing.

	• 2D paper space
	 creation of component drawings

Double Only Units

<u>Unit 4</u>

Unit 4		
		 manufacturing of products and delivering services, e.g. forming, fabrication, removal of material, addition of material, assembly processes, quality control
Learning aim A: Examine business functions and trade considerations that help engineering organisations thrive	A1 Business functions and key activities	 supply chain management, e.g. outsourcing decisions, supplier appraisal
		 marketing and sales, e.g. brand awareness, market research, sales, customer feedback

	• customer relations, e.g. meeting expectations, being proactive
	 resource management, e.g. sources of funding, resource allocation, stock control
	 staff recruitment, e.g. internal and external recruitment, apprenticeships
	 staff management, e.g. appraisals, support and training (continuing professional development)
	 financial, e.g. financial statements (profit and loss, break- even).
A2 Trade considerations	 terms, both expressed and implied, e.g. breach of contract, force majeure

	 warranties and conditions, e.g. indemnities, guarantees, insurance
	 consequences of non-performance, e.g. rejection of goods/services, financial penalty clauses
	 documentation, e.g. drawings, estimates, quotations, specifications.
	• by innovating
A3 Competitive advantage	• using new technology
	 protecting intellectual property
	A3 Competitive advantage

		• managing costs.
	B1 Reasons for cost control and types of costs	Reasons for cost control Types of costs
		• identifying activities, including the processes and activities required to produce an output
Learning aim B. Explore activity-based costing as a method to		• assigning resource costs to activities, including direct costs, indirect costs and general/administration costs
control costs and to determine if an engineering product or service is profitable	B2 Activity-based costing method	 identifying outputs, including products, services or customers
		 assigning activity costs to outputs, including using activity drivers to assign costs to outputs (cost objects)
		 activity cost pools, including material handling, set-up costs, and procurement
		 application of activity-based costing to determine profitability.
Learning aim C: Explore how engineering organisations use quality systems and value management to create value	C1 Quality systems	 Quality standards and accreditation include international quality standards that can be applied for voluntarily by engineering organisations Quality assurance
		Purposes of implementing a quality system

C2 The	he principles and processes of value management	 Principles of value management Phases in the process of carrying out a value analysis exercise on a product or service

<u>Unit 5</u>

Unit 5		
Learning aim A: Investigate an engineering project in a relevant specialist area	A1 Project life cycle	 initiation, to include identifying a problem, research and clarification of a problem, establishing key design features of possible solutions and constraints, idea generation and a feasibility stud
		 planning and design, to include resource and time planning for the chosen solution and creating a design based on the customer's requirements

	 implementation, to include undertaking project processes to develop the solution while controlling the project by monitoring it against the plans and managing risks and issues
	 evaluation, to include reviewing the outcome of the project, e.g. whether the customer requirements were met, whether the project was delivered on time and to budget, and how the project was delivered to the given theme or specification
	 researching a given project theme or initial idea and identifying problems to be solved using tools, e.g. the internet, journals, databases, libraries, publicly available company information
A2 Project idea generation and solution development	• creativity tools to solve problems, e.g. rewording problems, challenging assumptions, thinking in reverse, mind mapping, drawing a diagram, group discussion, brainstorming and Edward De Bono's Six Thinking Hats®
	 a specification that scopes out alternative technical solutions, using outline information to define what possible, as yet undesigned, products, systems or processes are intended to contain and do.
A3 Feasibility study of solutions	 Criteria to determine the feasibility of different solutions to a problem, including the potential

		 Selection of the proposed solution
		 resource plan, to include the internet, humans, peers, books and equipment
	B1 Planning and monitoring project-management processes	 time plan, to include a Gantt chart and critical path analysis to set priorities for different activities
Learning aim B: Develop project-management processes and		 project contingency, e.g. an amount of time or additional budget that is included in the plan to manage unforeseen events
		 project constraints, including time, budget, scope, sustainability, ethics and legality
a design solution for the specialist engineering project as undertaken in industry		 scheduled and frequent monitoring and management of the project
	B2 Risk and issue project-management processes	 The purpose of risk and issue management A risk is an event that adversely impacts on the project processes or outcome, and an issue is a future event which could adversely or positively impact project processes or
		• Risk and issue measures

	 The risk or issue severity = probability of the occurrence × expected impact on the project
	 The resultant risk and issue severity
	• Risks and issues should be assessed throughout the delivery of the project and medium, high and extreme severity risks and issues should be managed.
	 Management of risks and issues
	 Allowing contingency in the plans provides some flexibility in the event that risks and issues occur.
B3 Technical specification	Technical specification for the chosen product, system or process being developed
	 engineering drawings, computer-aided design (CAD), e.g. 3D, 2D and diagrams
B4 Design information	 simulations, e.g. pneumatic circuits, hydraulic circuits, electrical/electronic circuits and software models
94 Design mornation 3	 physical modelling, e.g. 3D rapid prototyping (also known as 3D printing or additive manufacturing), mock-ups in wood, cardboard and modelling material
	 processes or computer program, e.g. detailed flow chart(s), planning, operation sheets

		 documents, e.g. tables, formulas, pseudocode, outline of key algorithms, description and record of ergonomic analysis safety and sustainability considerations
Learning aim C: Undertake the solution for a specialist engineering project and present the solution as undertaken in industry	C1 Undertake and test the solution to the problem	 the use of project-management processes during the development of a solution, to include status reporting and management of risks and issues the safe use of resources, e.g. machines, workshops, tools and consumables troubleshooting methods to resolve problems fitness for purpose
		testing methods

	• fitness for audience
	 time planning and management to complete all the different activities within an appropriate timeframe and in an appropriate order
	 communication and literacy skills to follow and implement instructions appropriately, interpret documentation and communicate effectively with others in writing and verbally
C2 Demonstration of relevant behaviours	 commercial and customer awareness to ensure the product, process or system is fit for purpose and meets the brief
	 observable emotions linked to successes and issues during the project development, including personal successes and issues as well as attitudes and behaviour
	 individual support required to complete the project
C3 Present a solution to the problem	• thematic title and/or initial idea

	 research and clarification of the problem
	 possible solutions and constraints
	 initial specification of alternative technical solutions
	• feasibility study
	technical specification
	 project-management documents, including plans and a risk and issues log
	 logbook of events, e.g. diary, outline sketches, notes, records

	 design documents, e.g. sketches, engineering drawings, simulation and flow charts
	• artefacts for a product, service or process, e.g. prototype product, computer program, pneumatic or hydraulic circuit,
	electronic circuit, experiment process demonstration etest documentation, e.g. results, video, customer feedback
	and photographs
	peer reviews and tutor monitoring
	 conclusions on the success of the solution against the project theme and initial idea.

<u>Unit 58</u>

Unit 58		
Learning aim A: Know about energy management	A1 Legislation and international agreements	• UK legislation (Climate Change Act).

	A2 Sectors	International protocols and accords.
		Business and public sector.
	A3 Terminology	• Energy intensive industries.
		Small businesses.
		• Energy suppliers.
		• Key terminology, e.g. low carbon economy.
	A4 Energy conservation techniques	Carbon footprint.
		Global emissions.
		• Energy consumption.
		• Risk.
		• Saving energy, e.g. insulation, equipment, lighting, waste management
	A5 Energy technologies	• Saving energy, e.g. advanced photovoltaic cells, industrial energy efficiency accelerator, low carbon buildings accelerator
Learning aim B: Be able to plan for an energy management audit	B1 Energy source suppliers	Fossil and non-fossil fuels.
		• Electricity.
		• Gas.
		• Costs.
	B2 Organisational policies	Energy policy statements.
	B3 Practices and procedures	• Energy usage, daytime, night-time, weekends.

		Transport notices.
		Communication.
		• Rewards.
	B4 Employer/employees	• Attitudes.
		• Commitment.
		• Leadership.
		Communication.
		Organisational structure.
		Accountability.
_	B5 Buildings/equipment/materials/transport vehicles	Insulation.
		• Usage.
		• Age.
		Alternatives.
		Life cycle replacement.
	B6 Actions	• Approval.
		• Aims.
		Objectives.
		• Checklist.
	B7 Audit procedures	• Checklist.
		• Logs.

		Metering and measurements.
		• Frequency.
Learning aim C: Be able to conduct an energy management audit	C1 Energy audit	• Tours with key staff.
		Employer and employee discussions.
	C2 Energy usage checklist	• Energy suppliers.
		• Energy tariff.
		 Range of quantifiable procedures and practices.
		Costing procedure.
		• Equipment age and maintenance.
		• Materials used.
		Buildings, doors, windows, insulation, lighting.
		Recycling.
		• Waste.
	C3 Information and data collection	Qualitative and quantitative information.
		• Database.
		• Report.
		Benchmarking.
		• Patterns.
		Deviations.
		Results analysis.

		 Strengths and areas for improvement.
		 Recommendations for energy savings.
Learning aim D: Understand how to monitor and target energy savings	D1 Targeting	 Performance indicators, benchmarking.
		• Patterns.
		• Deviations.
	D2 Monitoring	Collection techniques.
		• Timelines.
		• Frequency.
		• Data analysis.
		• Patterns.
		Accuracy.
	D3 Review	Practices.
		• Policies.
		• Procedures.
		• Employer/employee commitment.
		 Targets versus actual energy savings.